$l_k$-biharmonic spacelike hypersurfaces in minkowski $4$-space $mathbb{e}_1^4$

نویسندگان

firooz pashaie

department of mathematics, faculty of basic sciences, university of maragheh, p.o.box 55181-83111, maragheh, iran. akram mohammadpouri

department of mathematics, university of tabriz, tabriz, iran.

چکیده

biharmonic surfaces in euclidean space $mathbb{e}^3$ are firstly studied from a differential geometric point of view by bang-yen chen, who showed that the only biharmonic surfaces are minimal ones. a surface $x : m^2rightarrowmathbb{e}^{3}$ is called biharmonic if $delta^2x=0$, where $delta$ is the laplace operator of $m^2$. we study the $l_k$-biharmonic spacelike hypersurfaces in the $4$-dimentional pseudo-euclidean space $mathbb{e}_1^4$ with an additional condition that the principal curvatures of $m^3$ are distinct. a hypersurface $x: m^3rightarrowmathbb{e}^{4}$ is called $l_k$-biharmonic if $l_k^2x=0$ (for $k=0,1,2$), where $l_k$ is the linearized operator associated to the first variation of $(k+1)$-th mean curvature of $m^3$. since $l_0=delta$, the matter of $l_k$-biharmonicity is a natural generalization of biharmonicity. on any $l_k$-biharmonic spacelike hypersurfaces in $mathbb{e}_1^4$ with distinct principal curvatures, by, assuming $h_k$ to be constant, we get that $h_{k+1}$ is constant. furthermore, we show that $l_k$-biharmonic spacelike hypersurfaces in $mathbb{e}_1^4$ with constant $h_k$ are $k$-maximal.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$

Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...

متن کامل

Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space

which gives an isometric embedding of the hyperbolic space H into R. Hano and Nomizu [11] were probably the first to observe the non-uniqueness of isometric embeddings of H in R by constructing other (geometrically distinct) entire solutions of (1.1)–(1.2) for n 1⁄4 2 (and c1 1) using methods of ordinary di¤erential equations. Using the theory of Monge-Ampère equations, A.-M. Li [12] studied en...

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

Biharmonic Hypersurfaces in 4-dimensional Space Forms

We investigate proper biharmonic hypersurfaces with at most three distinct principal curvatures in space forms. We obtain the full classification of proper biharmonic hypersurfaces in 4-dimensional space forms.

متن کامل

Spacelike hypersurfaces in de Sitter space

In this paper, we study the close spacelike hypersurfaces in de Sitter space. Using Bonnet-Myer’s theorem, we prove a rigidity theorem for spacelike hypersurfaces without the constancy condition on the mean curvature or the scalar curvature. M.S.C. 2010: 53C40, 53B30.

متن کامل

Spacelike Hypersurfaces with Free Boundary in the Minkowski Space under the Effect of a Timelike Potential

In this paper we consider a variational problem for spacelike hypersurfaces in the (n + 1)-dimensional Lorentz-Minkowski space L, whose critical points are hypersurfaces supported in a spacelike hyperplane determined by two facts: the mean curvature is a linear function of the distance to and the hypersurface makes a constant angle with along its boundary. We prove that the hypersurface is rota...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
sahand communications in mathematical analysis

جلد ۵، شماره ۱، صفحات ۲۱-۳۰

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023